Formules d'addition des sinus et cosinus

Pour tous nombres réels a et b :

- $\cos(a-b) = \cos a \cos b + \sin a \sin b$;
- $\cos(a+b) \cos a \cos b \sin a \sin b$;
- $\sin(a+b) = \sin a \cos b + \cos a \sin b$;
- $\sin(a-b) = \sin a \cos b \cos a \sin b$.

Formules de duplication

• Pour tout nombre réel a :

$$\sin 2a = 2 \sin a \cos a$$
; $\cos 2 a = \cos^2 a - \sin^2 a$.

• Pour tout nombre réel a :

$$\cos 2a = 2 \cos^2 a - 1$$
; $\cos 2a = 1 - 2 \sin^2 a$.

Formules de linéarisation

Pour tout nombre réel a :

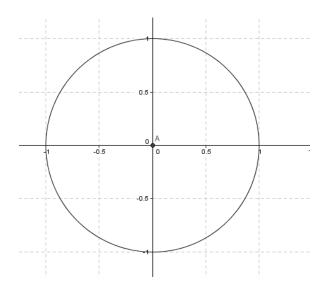
$$\cos^2 a = \frac{1 + \cos 2a}{2}$$
; $\sin^2 a = \frac{1 - \cos 2a}{2}$.

Etablir le tableau des valeurs remarquables :

Angle x en rad	0	$\frac{\pi}{4}$	$\frac{\pi}{3}$	
Angle <i>x</i> en degré	0			
Cos x	1	$\frac{\sqrt{2}}{2}$		
Sin x	0			

En utilisant le cercle trigonométrique ci-dessous, placer les points suivantes :

$$M_1(\frac{3\pi}{4})$$


$$M_2(\frac{5\pi}{2})$$

$$M_3(\frac{2\pi}{3})$$

$$M_4(-\frac{\pi}{\epsilon})$$

$$M_5(\frac{5\pi}{\epsilon})$$

$$M_3(\frac{2\pi}{3})$$
 $M_4(-\frac{\pi}{6})$ $M_5(\frac{5\pi}{6})$ $M_6(\frac{15\pi}{6})$

En utilisant le même cercle trigonométrique et le tableau des valeurs remarquables, remplir le tableau suivant :

Angle x en rad	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$-\frac{\pi}{6}$		$-\frac{\pi}{3}$	$\frac{5\pi}{4}$	
Angle x en				270°			150°
Angle <i>x</i> en degré							
Cos x							
Sin x							

Transformation à l'aide des formules.

Formules d'addition, de duplication et de linéarisation

14. + Transformer une écriture à l'aide des formules d'addition

Utiliser les formules d'addition pour vérifier, pour tout nombre réel x, chacune des égalités suivantes.

a)
$$2\cos\left(\frac{2x}{3} - \frac{\pi}{6}\right) = \sqrt{3}\cos\frac{2}{3}x + \sin\frac{2}{3}x$$
.

b)
$$2\cos\left(\frac{x}{3} + \frac{\pi}{6}\right) = \sqrt{3}\cos\frac{1}{3}x - \sin\frac{1}{3}x$$
.

c)
$$\sin\left(\frac{x}{3} + \frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2}\sin\frac{x}{3} + \frac{1}{2}\cos\frac{x}{3}$$
.

d)
$$2 \sin \left(2x - \frac{\pi}{4}\right) = \sqrt{2} \sin 2x - \sqrt{2} \cos 2x$$
.

 Utiliser les rappels sur les valeurs particulières et les angles associés de la partie « ce qu'il faut savoir » de ce chapitre.

15. + Même question qu'à l'exercice 14 avec :

a)
$$2\cos\left(2x - \frac{\pi}{4}\right) = \sqrt{2}\cos 2x + \sqrt{2}\sin 2x$$
.

b)
$$2\cos\left(\frac{x}{3} + \frac{\pi}{3}\right) = 2\cos\frac{1}{3}x - \sqrt{3}\sin\frac{1}{3}x$$
.

c)
$$2\sin\left(x + \frac{\pi}{6}\right) = \sqrt{3}\sin x + \cos x$$
.

d)
$$2\sin\left(x-\frac{\pi}{3}\right) = \sin x - \sqrt{3}\cos x$$
.

17. + Utiliser les formules d'addition pour déterminer les valeurs exactes des sinus et cosinus de :

a)
$$15^{\circ} = 45^{\circ} - 30^{\circ}$$
. b) $\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$. c) $\frac{5\pi}{12} = \frac{\pi}{4} + \frac{\pi}{6}$.

c)
$$\frac{5\pi}{12} = \frac{\pi}{4} + \frac{\pi}{6}$$
.

18. ++ Calculer des valeurs exactes de cos 105° et sin 105°.

20. + Utiliser les formules de duplication pour déterminer des valeurs exactes de sinus et de cosinus

En remarquant que $\frac{\pi}{6} = 2 \times \frac{\pi}{12}$, calculer les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

CORRIGÉ P. 418

21. +++ Linéariser cos²a

Exprimer, pour tout réel t, $\cos^2\left(2t + \frac{\pi}{6}\right)$ en fonction de $\cos\left(4t+\frac{\pi}{3}\right)$.

CORRIGÉ P. 418